
Quantitative Understanding in Biology 
Module I: Statistics 
Lecture I: Characterizing a Distribution 
Mean and Standard Distribution 
Biological investigation often involves taking measurements from a sample of a population. 

The mean of these measurements is, of course, the most common way to characterize their distribution: 

 

The concept is easy to understand and should be familiar to everyone. However, be careful when 
implementing it on a computer. In particular, make sure you know how the program you are using deals 
with missing values: 

> x <- rnorm(10) 
> x 
 [1] -0.05102204  0.38152698  0.66149378 
 [4]  0.41893786 -1.01743583 -0.55409120 
 [7] -0.14993880 -0.31772140 -0.44995050 
[10] -0.69896096 
 

Generates 10 random samples from a normal 
distribution. 

> mean(x) 
[1] -0.1777162 

Computes the mean 

> x[3] <- NA 
> x 
 [1] -0.05102204  0.38152698          NA 
 [4]  0.41893786 -1.01743583 -0.55409120 
 [7] -0.14993880 -0.31772140 -0.44995050 
[10] -0.69896096 

Indicate that one of the values is unknown 

> mean(x) 
[1] NA 
> mean(x, na.rm=TRUE) 
[1] -0.2709618 

The mean cannot be computed, unless you ask 
that missing values be ignored. 

> sum(x) 
[1] NA 
> sum(x, na.rm=TRUE) 
[1] -2.438656 
> length(x) 
[1] 10 
> length(na.omit(x)) 
[1] 9 
> sum(x, na.rm=TRUE)/length(na.omit(x)) 
[1] -0.2709618 

Computing the mean ‘manually’ requires careful 
attention to NAs. 

 

Similar principles hold when using Microsoft Excel. 
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In addition to the mean, the standard deviation and (to a lesser extent) the variance are also commonly 
used to describe a distribution of values: 

 

 

Observe that the variance is an average of the square of the distance from the mean. All terms in the 
summation are positive because they are squared. 

When computing the variance or standard deviation (SD) of a whole population, the denominator would 
be N instead of N-1. The variance of a sample from a population is always a little bit larger, because the 
denominator is a little bit smaller. There are theoretical reasons for this having to do with degrees of 
freedom; we will chalk it up to a “weird statistics thing”. 

Observe that the standard deviation has the same units of measure as the values in the sample and of 
the mean. It gives us a measure of how spread out our data is, in units that are natural to reason with. 

In the physical sciences (physics, chemistry, etc.), the primary source of variation in collected data is 
often due to “measurement error”: sample preparation, instrumentation, etc. This implies that if you 
are more careful in performing your experiments and you have better instrumentation, you can drive 
the variation in your data towards zero. Think about measuring the boiling point of pure water as an 
example. Some argue that if you need complex statistical analysis to interpret the results of such an 
experiment, you’ve performed the experiment badly, or you’ve done the wrong experiment. 

Although one might imagine that an experimenter would always use the best possible measurement 
technology available (or affordable), this is not always the case. When developing protocols for CT scans, 
one must consider that the measurement process can have deleterious effects on the patient due to the 
radiation dose required to carry out the scan. While more precise imaging, and thus measurements (say 
of a tumor size), can often be achieved by increasing the radiation dose, scans are selected to provide 
just enough resolution to make the medical diagnosis in question. In this case, better statistics means 
less radiation, and improved patient care. 

In biology, the primary source of variation is often “biological diversity”. Cells, and in particular, patients, 
are rarely in identical states, and you expect a non-trivial variation, even under perfect experimental 
conditions. In biology, we must learn to cope with this naturally occurring variation. 

Communicating a Distribution 
 and SD have a particular meaning when the distribution is normal. For the moment, we’ll not assume 

anything about normality, and consider how to represent a distribution of values. 
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Histograms convey information about a distribution graphically. They are easy to understand, but can be 
problematic because binning is arbitrary. There are essentially two arbitrary parameters that you select 
when you prepare a histogram: the width of the bins, and the alignment, or starting location, of the 
bins. For non-large N, the perceptions suggested by a histogram can be misleading. 

> set.seed(0) 
> x <- rnorm(50) 
> hist(x, breaks=seq(-3,3,length.out=6)) 
> hist(x, breaks=seq(-3,3,length.out=7)) 
> hist(x, breaks=seq(-3,3,length.out=12)) 

Three histograms are prepared; the same data are 
presented, but, depending on the binning, a 
different underlying distribution is suggested.  

When preparing histograms, be sure that the labels on the x-axis are chosen so that the binning intervals 

can be easily inferred. The first plot would better be prepared including one additional option: xaxp = 
c(-3,3,5). See the entry for par in the R help for this any many other plotting options; type ?par at 
the R prompt. 

R has a less arbitrary function, density, which can be useful for getting the feel for the shape of an 
underlying distribution. This function does have one somewhat arbitrary parameter (the bandwidth); it 
is fairly robust and default usually works reasonably well. 

> hist(x, breaks=seq(-3,3,length.out=13), xaxp=c(-3,3,4), 
probability=TRUE); lines(density(x)) 

Note that we add the probability option to the hist function; this plots a normalized histogram, 
which is convenient, as this is the scale needed by the overlayed density function. 

You should be wary of using summary statistics such as  and SD for samples that don’t have large N or 
that are not known to be normally distributed. For N=50, as above, other options include: 

• A table of all the values:  sort(x) 

• A more condensed version of the above: stem(x) 

For graphical presentations, do not underestimate the power of showing all of your data. With judicious 
plotting choices, you can often accomplish this for N in the thousands. 

stripchart(x) shows all data points. For N = 50, stripchart(x, pch="|") might be more 
appropriate. 

If you must prepare a histogram (it is often expected), overlaying the density curve and sneaking in a 
stripchart-like display can be a significant enhancement: 

> hist(x, breaks=seq(-3,3,length.out=13), xaxp=c(-3,3,4), 
probability=TRUE); lines(density(x)) 

> rug(x) 

For larger N, a boxplot can be appropriate: 
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> x <- rnorm(1000); boxplot(x) 

 You can overlay (using the add=TRUE option) a stripchart to show all data points. With many data 
points, a smaller plotting symbol and the jitter option are helpful. 

 > stripchart(x, vertical=TRUE, pch=".", method="jitter", add=TRUE) 

Note that boxplots show quartiles. The heavy bar in the middle is the median, not the mean. The box 
above the median is the third quartile; 25% of the data falls in it. Similarly, the box below the median 
holds the second quartile. The whiskers are chosen such that, if the underlying distribution is normal, 
roughly 1 in 100 data points will fall outside their range. These are putative outliers that you may want 
to further inspect. 

The concept of quartiles can be generalized to quantiles. Another way to characterize distributions is by 
reporting quantiles; quartiles and deciles are favorites: 

> quantile(x, (0:4)/4) 
         0%         25%         50%         75%        100%  
-2.99767066 -0.69364940 -0.01546943  0.65434645  3.02193840 
 
> quantile(x, (0:10)/10) 
         0%         10%         20%         30%         40%  
-2.99767066 -1.20812215 -0.87560155 -0.53779019 -0.26516716  
        50%         60%         70%         80%         90%  
-0.01546943  0.22308820  0.48496338  0.78565873  1.18193333  
       100%  
 3.02193840 
 
SD is a representation of how spread out your data are. If the underlying distribution is normal and N is 
large, then 95% of the samples are expected to fall within the range: . 

> x <- rnorm(100000) 
> mean(x) 
[1] 0.001076443 
> sd(x) 
[1] 1.000764 
> quantile(x, (0:40)/40) 
          0%         2.5%           5%         7.5%  
-4.754242304 -1.964334170 -1.650846246 -1.442248402  
         10%        12.5%          15%        17.5%  
-1.280851350 -1.147004677 -1.035610266 -0.935114705  
         20%        22.5%          25%        27.5%  
-0.841499568 -0.754756972 -0.679036632 -0.600832587  
         30%        32.5%          35%        37.5%  
-0.526768394 -0.455779370 -0.385446675 -0.317184080  
         40%        42.5%          45%        47.5%  
-0.252345155 -0.187829088 -0.123271243 -0.058831369  
         50%        52.5%          55%        57.5%  
 0.003971025  0.066956941  0.129356108  0.192253012  
         60%        62.5%          65%        67.5%  
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 0.257026661  0.321183502  0.388136537  0.458046456  
         70%        72.5%          75%        77.5%  
 0.528821444  0.601289931  0.677759750  0.758717314  
         80%        82.5%          85%        87.5%  
 0.842717888  0.933548945  1.035464420  1.145487565  
         90%        92.5%          95%        97.5%  
 1.277188560  1.435926218  1.637997636  1.964227885  
        100%  
 4.336132109  
 

We expect the mean to be zero, the SD to be unity, the 2.5% quantile to be at -1.96, and the 97.5% 
quantile to be at +1.96. 

Standard Deviation vs. Standard Error of the Mean 
An important, but very different, question that statistics can help us with is how well we can estimate 
the mean. Two factors influence this: how spread out the data are, and how much data we have. A new 
quantity, the Standard Error of the Mean, is introduced: 

 

For large N, we can be 95% sure that the true mean of the underlying population is in the range… 

 

…where  is the sample mean. We will formalize and extend this result in another session. 

Here is an experiment to demonstrate this. We generate a sample from a known normal distribution 
where the mean is zero and the standard deviation is unity, then compute a confidence interval (CI) for 
the mean. We expect that this CI will contain the true mean (which we know to be zero) roughly 19 out 
of 20 times. 

> for (i in 1:100) { 
+   x <- rnorm(10000) 
+   print(mean(x) + c(-1.96, 0, 1.96) * sd(x) / sqrt(length(x))) 
+ } 
 
[1] -0.024301502 -0.004775178  0.014751146 
[1] -0.026626053 -0.006999663  0.012626728 
[1] -0.021006574 -0.001665145  0.017676283 
[1] -0.023918612 -0.004202195  0.015514221 
[1] -0.0389625436 -0.0193659724  0.0002305987 
[1] -0.035444374 -0.015853783  0.003736808 
[1] -0.02646289 -0.00695293  0.01255703 
[1] -0.014265428  0.005169996  0.024605420 
[1] -0.006374521  0.013183087  0.032740695 
[1] -0.027726532 -0.008195687  0.011335157 
[1] -0.028349554 -0.008883653  0.010582248 
[1] -0.031477297 -0.011958221  0.007560854 
[1] -0.024676765 -0.005038202  0.014600361 
[1] 0.001781225 0.021552050 0.041322876 
[1] -0.027024247 -0.007516368  0.011991510 
[1] -0.011989703  0.007447232  0.026884167 
[1] -0.015610630  0.004039557  0.023689743 
[1] -0.013781684  0.005884203  0.025550091 

[1] -0.026578015 -0.006881238  0.012815538 
[1] -0.0205013516 -0.0007041864  0.0190929788 
[1] -0.016042673  0.003399703  0.022842080 
[1] -0.002855254  0.016817403  0.036490060 
[1] -0.034024678 -0.014692288  0.004640103 
[1] -0.007221995  0.012408992  0.032039980 
[1] -0.009129527  0.010746901  0.030623328 
[1] -0.013079007  0.006672627  0.026424261 
[1] -0.022694849 -0.003307884  0.016079082 
[1] -0.027884371 -0.008532565  0.010819241 
[1] 0.00974305 0.02926519 0.04878734 
[1] -0.027234717 -0.007591476  0.012051764 
[1] -0.003150395  0.016241695  0.035633785 
[1] -0.011179020  0.008338268  0.027855557 
[1] -0.009063754  0.010312788  0.029689330 
[1] -0.016275525  0.003311566  0.022898658 
[1] -0.041542741 -0.021898218 -0.002253696 
[1] -0.0004399937  0.0190984618  0.0386369172 
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[1] -0.0395574949 -0.0198794721 -0.0002014492 
[1] -0.030405467 -0.010958771  0.008487925 
[1] -0.026741095 -0.007219373  0.012302349 
[1] -0.0195650260  0.0001406561  0.0198463383 
[1] -0.010852923  0.008932587  0.028718097 
[1] -0.021023184 -0.001362284  0.018298616 
[1] -0.032128012 -0.012800292  0.006527427 
[1] -0.014295601  0.005436455  0.025168511 
[1] -0.010071603  0.009548244  0.029168092 
[1] -0.023738067 -0.004131066  0.015475936 
[1] -0.009742657  0.009975540  0.029693737 
[1] 0.008632623 0.028290878 0.047949132 
[1] -0.017761529  0.001915428  0.021592384 
[1] -0.01060836  0.00924938  0.02910712 
[1] -0.0201786752 -0.0005449171  0.0190888409 
[1] -0.022384361 -0.002820761  0.016742839 
[1] -0.021063830 -0.001345081  0.018373668 
[1] -0.016937999  0.002667279  0.022272557 
[1] -0.018183755  0.001535473  0.021254700 
[1] -0.036550951 -0.016922209  0.002706532 
[1] -0.022773824 -0.003336013  0.016101799 
[1] -0.015164353  0.004381009  0.023926372 
[1] -0.012301662  0.007435353  0.027172368 
[1] -0.017349224  0.002106028  0.021561280 
[1] -0.016890972  0.002804223  0.022499418 
[1] -0.013442029  0.006092335  0.025626700 
[1] -0.014835716  0.004868907  0.024573530 
[1] -0.008241882  0.011418128  0.031078138 
[1] -0.02932350 -0.00965467  0.01001416 
[1] -0.024917504 -0.005348383  0.014220739 
[1] -0.030790123 -0.011296159  0.008197805 
[1] -0.036026598 -0.016414003  0.003198591 

[1] -0.034872802 -0.015233129  0.004406544 
[1] -0.018245860  0.001475052  0.021195964 
[1] -0.023516307 -0.003742883  0.016030542 
[1] -0.024021403 -0.004490213  0.015040977 
[1] -0.010607586  0.009004412  0.028616410 
[1] -0.009601862  0.009955746  0.029513354 
[1] -0.020615433 -0.001143053  0.018329327 
[1] -0.016035976  0.003725782  0.023487540 
[1] -0.0203469118 -0.0006296587  0.0190875944 
[1] -0.03135966 -0.01174369  0.00787228 
[1] -0.016250733  0.003365887  0.022982508 
[1] -0.041422524 -0.021735918 -0.002049312 
[1] -0.027268162 -0.007798383  0.011671397 
[1] -0.029318299 -0.010000627  0.009317046 
[1] -0.024506008 -0.004866441  0.014773125 
[1] -0.023804302 -0.004134864  0.015534575 
[1] -0.017442125  0.002055394  0.021552913 
[1] -0.022553148 -0.003004035  0.016545078 
[1] -0.004416301  0.014960588  0.034337478 
[1] -0.009665545  0.009813423  0.029292391 
[1] -0.034476602 -0.014773927  0.004928748 
[1] -0.025977733 -0.006251579  0.013474575 
[1] -0.002699036  0.017051743  0.036802521 
[1] -0.010480175  0.009363427  0.029207029 
[1] -0.032002546 -0.012307894  0.007386758 
[1] -0.029632377 -0.009711457  0.010209464 
[1] -0.0203449679 -0.0006713485  0.0190022710 
[1] -0.0200708700 -0.0004346696  0.0192015309 
[1] -0.023238939 -0.003659484  0.015919971 
[1] -0.024821591 -0.004881682  0.015058228 
[1] -0.011626945  0.007985632  0.027598210 
[1] -0.0194360411  0.0001868259  0.0198096930 

 

This is pretty close to what was expected; in this particular case the true mean was not within the CI in 
six cases out of 100 (we expected about five). 

To reiterate, understanding the difference between the SD and the SEM is critical. The SD gives us an 
indication of how spread out the data in the underlying population is. The SEM is an indication of how 
confident we are in our estimate of the true mean of the underlying population. 

Many plots in publications show error bars. There is no standard as to what these represent; it could be 
±SD, ±SEM, ±1.96SD, ±1.96SEM, or, as we will see later, something else. If the publication does not 
explicitly state what the error bars represent, they are of no use to you (and you might begin to question 
the underlying analysis). 
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